First Selection Test — Solutions

Problem 1. Given an integer $n \ge 2$, let a_n , b_n , c_n be integer numbers such that $(\sqrt[3]{2} - 1)^n = a_n + b_n \sqrt[3]{2} + c_n \sqrt[3]{4}$. Show that $c_n \equiv 1 \pmod{3}$ if and only if $n \equiv 2 \pmod{3}$.

Solution 1. The binomial expansion of $(\sqrt[3]{2}-1)^n$ yields

$$c_n = \sum_{k \equiv 2 \pmod{3}} (-1)^{n-k} \cdot 2^{(k-2)/3} \binom{n}{k} \equiv (-1)^n \sum_{k \equiv 2 \pmod{3}} \binom{n}{k} \pmod{3}.$$

Since

$$\sum_{k \equiv 2 \pmod{3}} \binom{n}{k} = \frac{1}{3} \left((1+1)^n + \epsilon (1+\epsilon)^n + \epsilon^2 (1+\epsilon^2)^n \right) = \frac{1}{3} \left(2^n + 2\cos(n+2)\frac{\pi}{3} \right)$$

where $1 + \epsilon + \epsilon^2 = 0$, the condition $n \equiv 2 \pmod{3}$ may be restated as

$$3c_n = (-1)^n \left(2^n + 2\cos(n+2)\frac{\pi}{3}\right) \equiv 3 \pmod{9}.$$

Consideration of n modulo 6 yields $3c_n \equiv 3 \pmod{9}$ if $n \equiv 2$ or $5 \pmod{6}$, and $3c_n \equiv 0 \pmod{9}$ otherwise. The conclusion follows.

Solution 2. Consider the polynomial $f = (X-1)^n - c_n X^2 - b_n X - a_n \in \mathbb{Z}[X]$. Clearly, $f(\sqrt[3]{2}) = 0$. Since $X^3 - 2$ is irreducible in $\mathbb{Z}[X]$, it follows that $X^3 - 2$ divides f in $\mathbb{Z}[X]$, so $g_n = a_n + b_n X + c_n X^2$ is the remainder of the division of $(X-1)^n$ by $X^3 - 2$ in $\mathbb{Z}[X]$. Write n = 3q + r, where q is a non-negative integer and $r \in \{0, 1, 2\}$, to get $(X-1)^n = (X^3 - 1)^q (X-1)^r = (X^3 - 2) \cdot g + (X-1)^r$ in $\mathbb{Z}_3[X]$, and deduce thereby that $g_n = (X-1)^r$ in $\mathbb{Z}_3[X]$. Consequently, $c_n \equiv 0 \pmod{3}$ if $r \in \{0, 1\}$, and $c_n \equiv 1 \pmod{3}$ if r = 2. The conclusion follows.

Problem 2. Circles Ω and ω are tangent at a point P (ω lies inside Ω). A chord AB of Ω is tangent to ω at C; the line PC meets Ω again at Q. Chords QR and QS of Ω are tangent to ω . Let I, X, and Y be the incentres of the triangles APB, ARB, and ASB, respectively. Prove that $\angle PXI + \angle PYI = 90^{\circ}$.

Solution. Notice that a homothety centred at P mapping ω to Ω maps C to Q, and maps the line AB to the tangent to Ω at Q. Thus this tangent is parallel to AB, and hence Q is the midpoint of arc AB (not containing P). So the points I, X, and Y lie on the segments PQ, RQ, and SQ, respectively.

Recall that for any triangle KLM with the circumcircle Γ and incentre J, the points K, L, and J are equidistant from the midpoint of arc KL of Γ not containing M. Applying this to triangles APB, ARB, and ASB we obtain that QA = QB = QX = QY = QI.

Since Q is the midpoint of arc AB, we get that $\angle QPA = \angle QPB = \angle QAB$. Thus the triangles QAC and QPA are similar, and $QC \cdot QP = QA^2 = QX^2$. Since QX is tangent to ω , it follows that X is their point of tangency; analogously, Y is the point of tangency of QS with ω .

Finally, from isosceles triangles QXI and QYI we get $\angle QXI = \angle QIX = 90^{\circ} - \angle IQX/2$ and $\angle QYI = \angle QIY = 90^{\circ} - \angle IQY/2$. Denoting by O the centre of ω , we obtain $\angle QIX + \angle QIY = 180^{\circ} - \angle XQY/2 = 180^{\circ} - (180^{\circ} - \angle XOY)/2 = 90^{\circ} + \angle XPY$. Thus,

$$\angle PXI + \angle PYI = \angle XIY - \angle XPY = (90^{\circ} + \angle XPY) - \angle XPY = 90^{\circ}$$

as required.

Remark. The relation $QC \cdot QP = QA^2$ also follows from the inversion of pole Q interchanging the line AB and the circle Ω ,

Problem 3. Determine all injective functions f of the set of positive integers into itself satisfying the following condition: If S is a finite set of positive integers such that $\sum_{s \in S} 1/s$ is an integer, then $\sum_{s \in S} 1/f(s)$ is also an integer.

Solution. We shall prove that the identity is the unique function satisfying the conditions in the statement. Clearly, f(1) = 1, so $f(n) \ge 2$ if $n \ge 2$, by injectivity. We will use the following well-known result.

Egyptian fractions theorem. For every positive rational q and positive integer N, there exists a set $\{n_1, \ldots, n_k\}$ of positive integers such that $n_i > N$ for every $i = 1, 2, \ldots, k$, and

$$q = \sum_{i=1}^{k} \frac{1}{n_i}.$$

Now, consider an integer $n \ge 2$ and use the Egyptian fractions theorem to write $1 - 1/n = \sum_{s \in S} 1/s$, where S is a set of integers greater than n(n+1), and get thereby

$$1 = \frac{1}{n} + \sum_{s \in S} \frac{1}{s} = \frac{1}{n+1} + \frac{1}{n(n+1)} + \sum_{s \in S} \frac{1}{s}$$

Consequently,

$$\frac{1}{f(n)} + \sum_{s \in S} \frac{1}{f(s)} \quad \text{and} \quad \frac{1}{f(n+1)} + \frac{1}{f(n(n+1))} + \sum_{s \in S} \frac{1}{f(s)}$$

both are positive integers, so

$$\frac{1}{f(n+1)} + \frac{1}{f(n(n+1))} - \frac{1}{f(n)}$$

is an integer. Since

$$-\frac{1}{2} \le -\frac{1}{f(n)} < \frac{1}{f(n+1)} + \frac{1}{f(n(n+1))} - \frac{1}{f(n)} < \frac{1}{f(n+1)} + \frac{1}{f(n(n+1))} \le \frac{1}{2} + \frac{1}{2} = 1,$$

it follows that

$$\frac{1}{f(n)} = \frac{1}{f(n+1)} + \frac{1}{f(n(n+1))}.$$

In particular, f is strictly increasing, so $f(n) \ge n$.

Finally, proceed by induction on $n \ge 2$ to prove that f(n) = n. To show that f(2) = 2, simply notice that 2/f(2) = 1/f(2) + 1/f(3) + 1/f(6) is a positive integer not exceeding 1. To complete the proof, let f(n) = n for some $n \ge 2$ and write

$$\frac{1}{n} = \frac{1}{f(n)} = \frac{1}{f(n+1)} + \frac{1}{f(n(n+1))} \le \frac{1}{n+1} + \frac{1}{n(n+1)} = \frac{1}{n}$$

to conclude that f(n+1) = n+1.

Remark. We do not need the full version of the Egyptian fractions theorem. In fact, all we need in the solution above is the lemma below.

Lemma. For every integer $n \ge 2$, there exists a set S_n with $\sum_{s \in S_n} 1/s = 1$ such that $n \in S_n$, but n + 1, $n(n + 1) \notin S_n$.

Here we present a direct proof of this Lemma.

For each $n \in \{2, 3, 4, 5\}$ one of the sets $\{2, 3, 6\}$, $\{2, 4, 6, 12\}$, and $\{2, 5, 7, 12, 20, 42\}$ fits. Now assume that $n \ge 6$ and perform the following steps, starting with the set $S = \{2, 3, 6\}$.

Step 1. Let $k = \max S$; if $k(k+1) \le n$ then replace k with $\{k+1, k(k+1)\}$ and repeat this step. At the end, we arrive to a set S with $k = \max S$ such that $k \le n < k(k+1)$. If k = n then we are done; otherwise we proceed to Step 2.

Step 2. Replace k by $\{n\} \cup \{k(k+1), (k+1)(k+2), ..., n(n-1)\}$ obtaining the set S'. Notice that $n+1 \le k(k+1), n(n+1) > \max S'$; thus, if n+1 < k(k+1) then we are done. Otherwise, replace k(k+1) by $\{k(k+1)+1, k(k+1)(k(k+1)+1)\}$ obtaining the desired set.

Problem 4. Let *n* be an integer greater than 1. The set *S* of all diagonals of a (4n - 1)-gon is partitioned into *k* sets, S_1, \ldots, S_k , so that, for every pair of distinct indices *i* and *j*, some diagonal in S_i crosses some diagonal in S_j ; that is, the two diagonals share an interior point. Determine the largest possible value of *k* in terms of *n*.

Solution. The required maximum is k = (n-1)(4n-1). Notice that |S| = 2(n-1)(4n-1). Assume first that k > (n-1)(4n-1). Then there exists a set S_i with $|S_i| = 1$. Let $S_i = \{d\}$, and assume that there are v vertices on one side of d; then the number of vertices on the other side is 4n - 3 - v, and the total number of diagonals having a common interior point with d is $v(4n - 3 - v) \le (2n - 2)(2n - 1)$. Since each S_j with $j \ne i$ contains such a diagonal, we obtain $k \le (2n - 2)(2n - 1) + 1 = (n - 1)(4n - 1) - (n - 2) \le (n - 1)(4n - 1) - a$ contradiction.

Now it remains to construct a partition with k = (n-1)(4n-1). Let us enumerate the vertices A_1, \ldots, A_{4n-1} consecutively; we assume that the enumeration is cyclic, thus $A_{i+(4n-1)} = A_i$. Now, for every $t = 2, 3, \ldots, n$ and every $i = 1, 2, \ldots, 4n - 1$, let us define the set $S_{t,i} = \{A_i A_{i+t}, A_{i+t-1} A_{i+2n}\}$.

It is easy to see that the (n-1)(4n-1) sets $S_{t,i}$ form a partition of S; we claim that this partition satisfies the problem condition. Consider two sets $S_{t,i}$ and $S_{t',i'}$; by the cyclic symmetry we may assume that i = 0. One can easily observe that a diagonal d has no common interior points with the diagonals from $S_{t,0}$ if and only if its endpoints are both contained in one of the sets

$$\{A_0, A_1, \dots, A_{t-1}\}, \{A_t, A_{t+1}, \dots, A_{2n}\}, \{A_{2n}, A_{2n+1}, \dots, A_{4n-1}\}$$

(recall that $A_{4n-1} = A_0$); in such a case we will say that *d* belongs to the corresponding set. Now, the diagonals from $S_{t',i'}$ cannot belong to one set since this set encompasses at most 2n consecutive vertices. On the other hand, since these two diagonals have a common interior point they cannot belong to different sets. The claim is proved.

Remark. The solution for a (4n - 3)-gon is almost the same; one only needs to take some care of the diagonals of the form $A_i A_{i+n}$.