First Selection Test — Solutions

Problem 1. Given an integer n > 2, let ay, b,, ¢, be integer numbers such that (\Rﬁ - 1" =
an 4 bp V2 + ¢y V4. Show that ¢, = 1 (mod 3) if and only if n = 2 (mod 3).

Solution 1. The binomial expansion of (V/2 — 1) yields
=y, (=Rl (”) =(-)" ) (”) (mod 3).
k k
k=2 (mod 3) k=2 (mod 3)

Since

(2“ + 2cos(n + 2)%) ,

Wl =

2 (Z) - é(<1+ D" +e(l+ " +e*(1+€)") =

k=2 (mod 3)

where 1 + € + €2 = 0, the condition n = 2 (mod 3) may be restated as
3en, = (—1)" (2” + 2cos(n + 2)%) =3 (mod)9).

Consideration of n modulo 6 yields 3¢, = 3 (mod 9) if n =2 or 5 (mod 6), and 3¢, = 0 (mod 9)
otherwise. The conclusion follows.

Solution 2. Consider the polynomial f = (X —1)"—¢, X?~b,X —a, € Z[X]. Clearly, f(+/2) = 0.
Since X3—2 is irreducible in Z[X], it follows that X3—2 divides f in Z[X], 50 g, = an+bp X +c, X >
is the remainder of the division of (X —1)" by X3 —2 in Z[X]. Write n = 3¢+, where ¢ is a non-
negative integer and r € {0,1,2}, to get (X —1)" = (X3 - 1)9(X - 1)" = (X3 -2) - g+ (X - 1)"
in Zs[X], and deduce thereby that g, = (X — 1)" in Z3[X]. Consequently, ¢, = 0(mod 3) if
r € {0,1}, and ¢, = 1 (mod 3) if » = 2. The conclusion follows.

Problem 2. Circles © and w are tangent at a point P (w lies inside §2). A chord AB of  is
tangent to w at C; the line PC meets () again at (). Chords QR and Q.S of ) are tangent to
w. Let I, X, and Y be the incentres of the triangles APB, ARB, and ASB, respectively. Prove
that ZPXIT + ZPYI = 90°.

Solution. Notice that a homothety centred at P mapping w to 2 maps C' to ), and maps the
line AB to the tangent to  at (). Thus this tangent is parallel to AB, and hence @ is the
midpoint of arc AB (not containing P). So the points I, X, and Y lie on the segments PQ, RQ,
and S@Q, respectively.

Recall that for any triangle K LM with the circumcircle I' and incentre J, the points K, L,
and J are equidistant from the midpoint of arc KL of " not containing M. Applying this to
triangles APB, ARB, and ASB we obtain that QA = QB = QX = QY = Q1.

Since ) is the midpoint of arc AB, we get that ZQPA = ZQPB = ZQAB. Thus the
triangles QAC and QPA are similar, and QC - QP = QA? = QX?2. Since QX is tangent to w, it
follows that X is their point of tangency; analogously, Y is the point of tangency of QS with w.

Finally, from isosceles triangles QX I and QY I we get ZQXI = ZQIX = 90° — ZIQX/2 and
QYT = /ZQTY =90° — ZIQY /2. Denoting by O the centre of w, we obtain ZQIX + ZQIY =
180° — ZXQY/2 = 180° — (180° — LXOY)/2 = 90° + LX PY. Thus,

LPXI+ /PYI=/XI1Y — /XPY = (90°+ LZXPY) - LZXPY =90°

as required.



Remark. The relation QC - QP = QA? also follows from the inversion of pole @ interchanging
the line AB and the circle §2,

Problem 3. Determine all injective functions f of the set of positive integers into itself satisfying
the following condition: If S is a finite set of positive integers such that ) _g1/s is an integer,
then > g 1/f(s) is also an integer.

Solution. We shall prove that the identity is the unique function satisfying the conditions in
the statement. Clearly, f(1) =1, so f(n) > 2 if n > 2, by injectivity. We will use the following
well-known result.

Egyptian fractions theorem. For every positive rational ¢ and positive integer N, there exists

a set {ni,...,ni} of positive integers such that n; > N for everyi=1,2,...,k, and
k
1

Now, consider an integer n > 2 and use the Egyptian fractions theorem to write 1 — 1/n =
> scs 1/s, where S is a set of integers greater than n(n + 1), and get thereby

1 1 1 1 1
1=~ Z = =
n+ s n+1+n(n—|—1)+sez;qs

Consequently,

1 1 1 1 1
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both are positive integers, so

is an integer. Since




it follows that
1 1 1

= + )
fn)  fln+1) ~ f(n(n+1))
In particular, f is strictly increasing, so f(n) > n.
Finally, proceed by induction on n > 2 to prove that f(n) = n. To show that f(2) = 2,
simply notice that 2/f(2) = 1/f(2) +1/f(3) + 1/f(6) is a positive integer not exceeding 1. To
complete the proof, let f(n) = n for some n > 2 and write

1 1 1 1 1 1 1

DT TeAD)  Jemr) ekl et w
to conclude that f(n+1) =n+ 1.

Remark. We do not need the full version of the Egyptian fractions theorem. In fact, all we need
in the solution above is the lemma below.

Lemma. For every integer n > 2, there exists a set S, with ZseSn 1/s =1 such that n € Sy,
butn+ 1, n(n+1) ¢ S,.

Here we present a direct proof of this Lemma.
For each n € {2,3,4,5} one of the the sets {2,3,6}, {2,4,6,12}, and {2,5,7,12,20,42} fits.
Now assume that n > 6 and perform the following steps, starting with the set S = {2, 3,6}.

Step 1. Let k = max S; if k(k + 1) < n then replace k with {k + 1,k(k + 1)} and repeat this
step. At the end, we arrive to a set S with k¥ = max S such that £ <n < k(k+1). If k = n then
we are done; otherwise we proceed to Step 2.

Step 2. Replace k by {n} U{k(k+1),(k+1)(k+2),...,n(n— 1)} obtaining the set S’. Notice
that n+1 < k(k+1), n(n+1) > max S’; thus, if n4+1 < k(k + 1) then we are done. Otherwise,
replace k(k + 1) by {k(k+1) + 1,k(k +1)(k(k + 1) 4+ 1) } obtaining the desired set.

Problem 4. Let n be an integer greater than 1. The set S of all diagonals of a (4n — 1)-gon
is partitioned into k sets, Si, ..., Sk, so that, for every pair of distinct indices ¢ and j, some
diagonal in S; crosses some diagonal in S;j; that is, the two diagonals share an interior point.
Determine the largest possible value of k in terms of n.

Solution. The required maximum is k = (n — 1)(4n — 1). Notice that |S| = 2(n — 1)(4n — 1).
Assume first that & > (n — 1)(4n — 1). Then there exists a set S; with |S;| = 1. Let S; = {d},
and assume that there are v vertices on one side of d; then the number of vertices on the other
side is 4n — 3 — v, and the total number of diagonals having a common interior point with d is
v(4n —3 —v) < (2n — 2)(2n — 1). Since each S; with j # ¢ contains such a diagonal, we obtain
E<(2n—-2)2n—1)+1=(n—-1)4n—-1)—(n—2) < (n—1)(4n — 1) — a contradiction.

Now it remains to construct a partition with ¥ = (n — 1)(4n — 1). Let us enumerate the
vertices Ay,. .., Asn—1 consecutively; we assume that the enumeration is cyclic, thus A (4n,_1) =
A;. Now, for every t = 2,3,...,n and every ¢« = 1,2,...,4n — 1, let us define the set S;; =
{AiAiye, Aivi—1Aivon )

It is easy to see that the (n — 1)(4n — 1) sets S;; form a partition of S; we claim that this
partition satisfies the problem condition. Consider two sets S;; and Sy ;; by the cyclic symmetry
we may assume that ¢ = 0. One can easily observe that a diagonal d has no common interior
points with the diagonals from S; g if and only if its endpoints are both contained in one of the
sets

{A[)vAlv"'aAt—l}a {Atht-l—la"'vAQn}; {A2n7A2n+17"'7A4n—1}



(recall that A4p—1 = Ap); in such a case we will say that d belongs to the corresponding set.
Now, the diagonals from Sy ;; cannot belong to one set since this set encompasses at most 2n
consecutive vertices. On the other hand, since these two diagonals have a common interior point
they cannot belong to different sets. The claim is proved.

Remark. The solution for a (4n — 3)-gon is almost the same; one only needs to take some care
of the diagonals of the form A;A;+,.



